Skip to main content

Introduction to Toxicology - Toxicology

Introduction to Toxicology

Toxicology

The study of the adverse effects of chemicals on living organisms and the underlying mechanisms
Like medicine, toxicology is both a science and an art. The science of toxicology is defined as the observational and data-gathering phase, whereas the art of toxicology consists of the utilization of the data to predict outcomes of exposure in human and animal population.

History of Toxicology
          Antiquity: Ebers papyrus (1500 B.C.), Ben Chao Gong Mu (Ming dynasty)

          Middle ages: Renaissance - Poisons and Their Antidotes (1198), arsenic-containing products

          Age of enlightenment: Parcelsus (1493-1548) “All substances are poisons; there is none   which is not a poison. The right dose differentiates a poison from a remedy.”

          Age of enlightenment: Orfila (1787-1853) – the first toxicologist to use autopsy material and chemical analysis systematically as legal proof of poisoning.
    Oswald Schmiedeberg (1838-1921) – the first toxicologist to train 120 students who later populated the most important laboratories of pharmacology and toxicology throughout the world.

          Morden toxicology: 1900-
        Development of early advances in analytic methods: heavy metals
        Early mechanistic studies: drugs, plants
        Introduction of new toxicants and antidotes: nitrite and thiosulfate for cyanide; DDT (1944); organophophorus compounds(1952)
        Development of new branches

          The Silent Spring (Rachel Carson, 1962)
“The earth’s vegetation is a part of a web of life in which there are intimate and essential relations between plants and the earth, between plants and other plants, between plants and animals. Sometimes we have no other choice but to disturb these relationships, but we should do so thoughtfully, with full awareness that what we do may have consequences remote in time and place.”



Toxicology Branch

          According to object of study:
        Animal Toxicology
        Human Toxicology
        Plant Toxicology
        Insect Toxicology
        Livestock Toxicology

          According to field of study:
        Environmental Toxicology
        Food Toxicology
        Occupational Toxicology
        Clinical Toxicology
        Forensic Toxicology
        Analytic Toxicology

          According to target organ of study:
        Liver Toxicology
        Kidney Toxicology
        Neurotoxicology
        Immunotoxicology
        Productive Toxicology
        Hemotoxicolgy

          According to mechanism of study:
        Cellular Toxicology
        Molecular Toxicology
        Membrane Toxicology
        Biochemical Toxicology
        Genetic Toxicology

          According to area of study:
        Descriptive Toxicology
        Mechanistic Toxicology
        Regulatory Toxicology



Main Areas of Toxicology Study

          Descriptive Toxicology :
        To test toxicity in experimental animals to provide important clues to a chemical’s mechanism of action.
        To yield information that can be used to evaluate risks posed to humans and the environment.

          Mechanistic Toxicology :
        To identify and understand the cellular, biochemical and molecular mechanisms by which chemicals exert toxic effects on living organisms.
        To design and produce safer alternative chemicals for therapy of poisoning and treatment of diseases.

          Regulatory Toxicology :
        To perform the risk assessment of a potential hazard to the human health and the ecosystem.
        To establish standards for the amount of chemicals permitted in ambient air, industrial atmosphere, and drinking water.

Spectrum of Toxic Dose

          Among chemicals there is a wide spectrum of doses needed to produce deleterious effects, serious injury, or death.

          However, the measures of acute lethality such as LD50 may not accurately reflect the full spectrum of toxicity associated with exposure, e.g., carcinogenic or teratogenic effects.

Spectrum of Undesired Effects (1)

          Allergic reactions
        Chemical allergy is an immunologically mediated adverse reaction to a chemical and is dose-related for a given individual.
        The incidence of allergic asthma has increased substantially in recent years.

Spectrum of Undesired Effects (2)

          Idiosyncratic reactions
        Referring to a genetically determined abnormal reactivity to a chemical, i.g., extreme sensitive to low doses or extreme insensitive to high doses.
        Examples of chemical idiosyncrasy include exposures to succinylcholine and methemoglobin-inducing chemicals.

Spectrum of Undesired Effects (3)

          Immediate versus delayed toxicity
        Most chemicals produce immediate toxic effects but not delayed effects.
        Delayed toxicity can be seen in carcinogenic chemicals (years) and organophosphorus pesticides (weeks) such as TOCP to inhibit the neuropathy target esterase (NTE).

Spectrum of Undesired Effects (4)

          Reversible versus irreversible toxic effects
        The ability of exposed tissue to regenerate largely determines where the effects is reversible or irreversible.
        Carcinogenic and teratogenic effects are usually considered irreversible toxic effects once they occur.

Spectrum of Undesired Effects (5)

          Local versus systemic toxicity
        Local effects occur at the site of first contact of chemicals, e.g., ingestion of caustic substances or inhalation of irritant materials.
        Systemic effects require absorption and distribution of a toxicant from its entry point to a distant site to produce damages, some of the affected organs are referred to as the target organs of a particular chemical.



Information Resource of
Toxicology, Hazardous Chemicals, and the Environment

1. Chemical Information
Identify chemical, its synonyms, and CAS number
www.chemfinder.com
find chemical structure, chemical surrogate based on structure similarity.  Can be searched by using a chemical name, CAS Number, molecular formula, or molecular weight
toxnet.nlm.nih.gov/              (ChemID)
find which National Library of Medicine (NLM) databases contain information on the chemical.

2. Toxicology Information

http://toxnet.nlm.nih.gov/   Summarize toxicological study results, etc. 
http://toxnet.nlm.nih.gov/   search for original studies.  
http://ntp-server.niehs.nih.gov/    National Toxicology Program             
http://ehis.niehs.nih.gov/          Environmental Health Information Service www.epa.gov  Environmental Protection Agency
www.fda.gov  Food and Drug Administration    
www.osha.gov  Occupational Safety and Health Administration                              
www.atsdr.cdc.gov  Agency for Toxic Substances and Disease Registry 
www.acgih.org    American Conference of Governmental industrial Hygienist www.iarc.fr  The International Agency for Research on Cancer       
www.fao.org     Food and Agriculture Organization of the United Nations
http://www.toxicology.org/Information/siteofinterest/sites.html#Government


Comments

Popular posts from this blog

Nitrat dengan Metoda Brucin Asetat - Laboratorium Lingkungan - Tehnik Lingkungan - lingkunganjaya

Nitrat dengan Metoda Brucin Asetat Pemeriksaan nitrat merupakan periksaan yang agak sulit disebabkan karena tata kerja relatif kompleks, karena adanya unsur pengganggu, dan karena terbatasnya batas kadar dari berbagai teknik. Sampel yang telah diuji berarti batas konsentrasinya telah diketahui yang mana berarti pula metode pemeriksaannya sudah tertentu. Pengujian tersebut tidak berpengaruh pada hasil yang akan didapat. Alat ·         Spektrofotometer ·         Tabung kimia ·         Pipet isi 5 ml dan 10 ml ·         Pipet ukur 5 ml Bahan ·         Larutan sangga NH4OAc 1 M, pH 4,8. Timbang 77,00 gram serbuk NH4-asetat p.a. ke dalam labu ukur 1 l. Tambahkan air hingga sekitar 900 ml, tambahkan asam asetat glasial p.a. dan kocok hingga pH 4,8. Impitkan dengan air beb...

Breakpoint Chlorination (BPC) - Laboratorium Lingkungan - Tehnik Lingkungan - lingkunganjaya

Breakpoint Chlorination (BPC) Sebelum dikonsumsi, biasanya air baku membutuhkan suatu proses pengolahan air. Sistem pengolahan air terdiri dari proses koagulasi-flokulasi, sedimentasi, filtrasi dan desinfeksi. Air yang telah disaring di unit filtrasi pada prinsipnya sudah memenuhi standar kualitas tetapi untuk keperluan menghindari kontaminasi air oleh mikroorganisme selama penyimpanan dan pendistribusian perlu dilakukan proses desinfeksi. Desinfeksi yang umum digunakan adalah dengan cara klorinasi, walaupun ada beberapa cara lain seperti dengan ozon dan ultra violet (UV) yang jarang digunakan. Keefektifan desinfektan dalam membunuh mikroorganisme tergantung pada (AWWA, 1997) : 1.   Jenis desinfektan yang digunakan 2.   Konsentrasi residu desinfektan 3.   Waktu dimana air kontak dengan desinfektan 4.   Temperatur air 5.   pH air, yang mempunyai pengaruh dalam mengnon-aktifkan apabila klorin digun...

K3 BAHAN-BAHAN KIMIA - KLASIFIKASI BAHAYA & APD (ALAT PELINDUNG DIRI) - K3 - Tehnik Lingkungan - lingkunganjaya

K3 BAHAN-BAHAN KIMIA KLASIFIKASI BAHAYA n   KLASIFIKASI NFPA (NATIONAL FIRE PROTECTION ASSOCIATION ) KESEHATAN (NFPA HEALTH HAZARDS) MUDAH TERBAKAR (NFPA FLAMMABILITY HAZARDS) REAKTIVITAS (NFPA REACTIVITY HAZARDS) TINGKAT BAHAYA THD KES YANG DILAMBANGKAN DG WARNA BIRU n   4 =  BHAN YANG DAPAT MENYEBABKAN KEMATIAN PADA KETERPAAN JANGKA PENDEK ATAU YANG DAPAT MENIMBULKAN LUKA FATAL MESKIPUN ADA PERTOLONGAN DG SEGERA n   3 = BHN YANG DAPAT MENIMBULKAN AKIBAT SERIUS PADA KETERPAAN JANGKA PENDEK, MESKIPUN ADA PERTOLONGAN SEGERA n   2 = BAHAN YANG PADA KETERPAAN INTENSIF ATAU TERUS MENERUS DAPAT MENIMBULKAN LUKA MESKIPUN TIDAK ADA PERTOLONGAN SEGERA. n   1 = BAHAN YANG TIDAK BERBAHAYA MESKIPUN KENA API n   0 = BAHAN YANG TIDAK BERBAHAYA MESKIPUN KENA API KLASIFIKASI FLAMMABILITY n   4 = BAHAN YANG SEGERA MENGUAP DALAM UDARA NORMAL DAN DAPAT TERBAKAR DENGAN CEPAT n   3 = BAHAN CAIR ATAU PADAT YANG DAPAT...